$\mathrm{XH}_{5}{ }^{\mathbf{2 +}}$ Dications and $\mathrm{XH}_{6}{ }^{3+}$ Trications $(\mathbf{X}=\mathbf{N}, \mathbf{P}$, and As) ${ }^{1}$

Golam Rasul,* G. K. Surya Prakash, and George A. Olah*

> Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California, University Park Los Angeles, California 90089-1661
> Received August 26, 1997
> Revised Manuscript Received November 7, 1997

There is continued theoretical ${ }^{2}$ and experimental ${ }^{3}$ interest in higher coordinate ${ }^{4}$ multicharged main group compounds. We recently reported on the calculated structures and energies of parent hexa-, hepta-, and octacoordinate boronium ${ }^{5}$ and alonium ${ }^{6}$ ions as well as pentacoordinate ammonium dication $\left(\mathrm{NH}_{5}^{2+}\right)^{7}$ and sulfonium trication $\left(\mathrm{SH}_{5}{ }^{3+}\right) .{ }^{8}$ Schmidbaur and his associates have prepared a wide variety of dipositively charged gold complexes of main group elements including carbon ${ }^{9}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3^{-}}\right.$ $\left.\mathrm{PAu}]_{6} \mathrm{C}\right\}^{2+}$, nitrogen ${ }^{10}\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\right]_{5} \mathrm{~N}\right\}^{2+}$, phosphorus ${ }^{11}$ $\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\right]_{5} \mathrm{P}\right\}^{2+}$, sulfur ${ }^{12}\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\right]_{4} \mathrm{~S}\right\}^{2+}$, and oxygen ${ }^{13}$ $\left\{\left[\left(o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAu}\right]_{4} \mathrm{O}\right\}^{2+}$ and determined their X-ray structures. These represent isolobal analogues of $\mathrm{CH}_{6}{ }^{2+}, \mathrm{NH}_{5}{ }^{2+}$, $\mathrm{PH}_{5}{ }^{2+}, \mathrm{SH}_{4}{ }^{2+}$, and $\mathrm{OH}_{4}{ }^{2+}$, respectively.
Zeller and Schmidbaur ${ }^{14}$ have succeeded to prepare and identified in solution the hexacoordinate tripositively charged octahedral $\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\right]_{6} \mathrm{P}\right\}^{3+}$ complex. This is the isolobal analogue of $\mathrm{PH}_{6}{ }^{3+}$. However, no single crystal of the complex could be obtained to allow structural study. ${ }^{14}$
In contrast to the pentacoordinate nitrogen and phosphorus complexes no similar arsenic complex could be so far observed. Schmidbaur et al. have prepared ${ }^{15}$ only the four-coordinate square pyramidal $\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{PAu}\right]_{4} \mathrm{As}\right\}^{+}$complex of arsenic and determined its X-ray structure.
In continuation of our study of higher coordinate onium superelectrophiles ${ }^{16}$ we have now extended our investigations to the structures and energetics of $\mathrm{XH}_{5}{ }^{2+}$ and $\mathrm{XH}_{6}{ }^{3+}(\mathrm{X}=\mathrm{N}$, P, and As) by ab initio calculations.

Calculations were carried out with Gaussian $94 .{ }^{17}$ The geometry optimizations and frequency calculations were performed at the MP2/6-31G** level. ${ }^{18 a}$ From calculated frequen-

[^0]Table 1. Total Energies (-au) and $\mathrm{ZPE}^{a}(\mathrm{kcal} / \mathrm{mol})$

	$\begin{aligned} & \text { MP2/6-31G**// } \\ & \text { MP2/6-31G** } \end{aligned}$		G2
1	56.57497 (29.3)	56.61956	56.62369
2	56.12423 (26.2)	56.16808	56.17659
3	342.80923 (24.8)	342.88176	342.89125
4	342.77552 (23.4)		342.86153
5	341.57772 (13.9)	341.63423	341.64625
6	342.45419 (25.3)	342.53770	342.54488
7	2234.08366 (22.8)	2236.29942	2236.31042
8	2234.03747 (21.5)		2236.26768
9	2232.86353 (13.0)	2235.06978	2235.08644
10	2233.76301 (23.4)	2235.98962	2235.99703
$\mathrm{NH}_{3}{ }^{\text {+ }}$	55.17360 (17.0)		55.22950
NH_{4}^{+}	56.73368 (29.7)		56.78140
PH_{4}^{+}	342.89361 (21.7)		342.97573
$\mathrm{AsH}_{4}{ }^{+}$	2234.14188 (20.2)		2236.36644
$\mathrm{H}_{3}{ }^{+}$	1.32428 (12.6)		1.32445
H_{2}	1.15766 (6.6)		1.16636

${ }^{a}$ Zero-point vibrational energies (ZPE) at MP2/6-31G**//MP2/6$31 \mathrm{G}^{* *}$ scaled by a factor of 0.93 .
cies, the optimized structures were characterized as minima $($ NIMAG $=0)$ or transition structure (NIMAG $=1$). For the MP2/6-31G**-optimized structures further geometry optimizations were carried out at the $\operatorname{QCISD}(\mathrm{T}) / 6-311 \mathrm{G}^{* *}$ level. For improved energy, the Gaussian-2 (G2) energies ${ }^{18 \mathrm{~b}}$ were computed. Calculated energies are given in Table 1. MP2/6-31G** geometrical parameters and G2-calculated energies will be discussed throughout, unless stated otherwise.
$\mathbf{N H}_{5}{ }^{\mathbf{2 +}}$: Olah et al. previously reported ${ }^{7}$ structures, energies, and dissociation barriers of $\mathrm{NH}_{5}{ }^{2+}$. We have calculated the $\mathrm{NH}_{5}{ }^{2+}$ only to compare it with the $\mathrm{PH}_{5}{ }^{2+}$ and $\mathrm{AsH}_{5}{ }^{2+}$. The calculated $C_{4 v}$ symmetric stable minimum $\mathbf{1}$ for $\mathrm{NH}_{5}{ }^{2+}$ is shown in Figure 1. In 1, one hydrogen atom is bonded to the nitrogen atom by sharing two valence electrons and the remaining four hydrogen atoms are bonded to the nitrogen atom by sharing only six valence electrons.
$\mathbf{N H}_{\mathbf{6}}{ }^{\mathbf{3 +}}$: At the MP2/6-31G** level the $D_{3 h}$ symmetric form 2 is found to be the only stable minimum for parent $\mathrm{NH}_{6}{ }^{3+}$. The $\mathrm{N}-\mathrm{H}$ bond distance of the trication is $1.210 \AA$. This is slightly longer than those of the dication $\mathbf{1}$. There may be some bonding interaction between two adjacent hydrogens $\left(\mathrm{H}_{\mathrm{a}}\right.$ and H_{b}) which are separated by 1.390 Å. Using G2 theory the dissociation of 2 into $\mathrm{NH}_{5}{ }^{2+}$ and H^{+}was calculated to be exothermic by $280.6 \mathrm{kcal} / \mathrm{mol}$ (Scheme 1). Thus 2 is highly unstable thermodynamically. On the other hand, dissociation of 2 into $\mathrm{NH}_{3}{ }^{2+}$ and $\mathrm{H}_{3}{ }^{+}$was also found to be exothermic by $236.8 \mathrm{kcal} / \mathrm{mol}$.
$\mathbf{P H}_{5}{ }^{\mathbf{2}}$: Unlike the $C_{4 v}$ symmetrical 1, the C_{s} symmetrical structure $\mathbf{3}$ is the only stable minimum on the potential energy surface of $\mathrm{PH}_{5}{ }^{2+}$. The $C_{4 v}$ symmetrical structure of $\mathrm{PH}_{5}{ }^{2+}$ is not a minimum at the MP2/6-31G** level and contains two imaginary frequencies (i.e., NIMAG $=2$) in its calculated vibrational frequencies at the same MP2/6-31G** level. Structure 3 contains a three-center-two-electron ($3 \mathrm{c}-2 \mathrm{e}$) bond and resembles a complex between $\mathrm{PH}_{3}{ }^{2+}$ and H_{2}. The structure 3 is similar to the C_{s} symmetry structure of parent $\mathrm{CH}_{5}{ }^{+}$. ${ }^{\text {a }}$

[^1]

Figure 1. MP2/6-31G ${ }^{* *}$ structures of $\mathbf{1} \mathbf{- 1 0}\left(\mathrm{QCISD}(\mathrm{T}) / 6-311 \mathrm{G}^{* *}\right)$.
Scheme 1^{a}

${ }^{a}$ With the G2 method.
Structure $\mathbf{3}$ can also be viewed as a proton inserted into one of the $\sigma \mathrm{P}-\mathrm{H}$ bonds of $\mathrm{PH}_{4}{ }^{+}$to form a $3 \mathrm{c}-2 \mathrm{e}$ bond between phosphorus and hydrogen. The phosphorus in $\mathrm{PH}_{4}{ }^{+}$, however, does not undergo formal expansion of the valence octet involving d orbitals of phosphorus upon protonation since no minima of $\mathrm{PH}_{5}{ }^{2+}$ other than $\mathbf{3}$ could be located on its potential energy surface.

The electron-deficient $\mathrm{P}-\mathrm{H}$ distances of $3 \mathrm{c}-2 \mathrm{e}$ interaction of 1.670 and $1.669 \AA$ are expectedly about $0.3 \AA$ longer than those of $\mathrm{P}-\mathrm{H}$ bonds of $2 \mathrm{c}-2 \mathrm{e}$ at the MP2/6-31G** level. The $\mathrm{H}-\mathrm{H}$ distance in the $3 \mathrm{c}-2 \mathrm{e}$ interaction of $0.823 \AA$ is only 0.089 Å longer than that found in the hydrogen itself at the same MP2/ $6-31 \mathrm{G}^{* *}$ level of theory. The both $\mathrm{P}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ bonds of $\mathbf{3}$ become slightly longer upon optimizations with the higher $\operatorname{QCISD}(\mathrm{T}) / 6-311 \mathrm{G}^{* *}$ levels of theory.

The transition structure 4 (Figure 1), for intramolecular hydrogen transfer in 3, was located. 4 lies $18.7 \mathrm{kcal} / \mathrm{mol}$ higher than 3. Thus, hydrogen scrambling in $\mathbf{3}$ through transition state 4 has a substantial kinetic barrier. At G2 the dissociation of $\mathbf{3}$ into $\mathrm{PH}_{4}{ }^{+}$and H^{+}is calculated to be exothermic by $53.0 \mathrm{kcal} /$ mol (Scheme 1). In contrast, dissociation of $\mathbf{1}$ into NH_{4}^{+}and H^{+}is more exothermic by $99.0 \mathrm{kcal} / \mathrm{mol}$.

We also calculated the reaction of $\mathrm{PH}_{3}{ }^{2+} \mathbf{5}$ with H_{2}, which is calculated to be exothermic by $49.4 \mathrm{kcal} / \mathrm{mol}$. The optimized structure of $\mathrm{PH}_{3}{ }^{2+} \mathbf{5}$ is given in Figure 1.
$\mathbf{P H}_{6}{ }^{3+}$: The $C_{2 v}$ symmetric structure $\mathbf{6}$ is the only minimum that was located on the potential energy surface of $\mathrm{PH}_{6}{ }^{3+} .6$ is characterized with two $3 \mathrm{c}-2 \mathrm{e}$ bonds and two $2 \mathrm{c}-2 \mathrm{e}$ bonds and resembles a complex between $\mathrm{PH}_{2}{ }^{3+}$ and two hydrogen molecules (Figure 2). The $\mathrm{P}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}$ distances of $3 \mathrm{c}-2 \mathrm{e}$ interaction are 1.695 and $0.885 \AA$. The dissociation of 6 into 3 and H^{+}is $217.4 \mathrm{kcal} / \mathrm{mol}$ exothermic, whereas into $\mathrm{PH}_{3}{ }^{2+} \mathbf{5}$ and $\mathrm{H}_{3}{ }^{+}$is even more exothermic by $267.2 \mathrm{kcal} / \mathrm{mol}$ (Scheme 1).
$\mathbf{A s H}_{5}{ }^{\mathbf{2}}$: Similar to $\mathbf{3}$, the C_{s} symmetrical 7 with a $3 \mathrm{c}-2 \mathrm{e}$ bond is the only stable minimum on the potential energy surface of $\mathrm{AsH}_{5}{ }^{2+}$. Similar to $\mathrm{PH}_{5}{ }^{2+}$, the $C_{4 v}$ symmetrical structure of $\mathrm{AsH}_{5}{ }^{2+}$ is also not a minimum at the MP2/6-31G** level and contains two imaginary frequencies in its calculated vibrational frequencies. Even the arsenic atom in $\mathrm{AsH}_{4}{ }^{+}$does not undergo formal expansion of the valence octet involving d orbitals of arsenic upon protonation since no minima of $\mathrm{AsH}_{5}{ }^{2+}$ other than 7 could be located on its potential energy surface. Intramolecular hydrogen scrambling in 7 through the transition structure 8 (Figure 1) has also a high kinetic barrier of $26.8 \mathrm{kcal} / \mathrm{mol}$. Dissociation of 7 into AsH_{4}^{+}and H^{+}is exothermic by only $35.2 \mathrm{kcal} / \mathrm{mol}$ (Scheme 1).

Calculations also shows that the reaction of 9 with H_{2} will be exothermic by $36.2 \mathrm{kcal} / \mathrm{mol}$. The optimized structure of 9 is given in Figure 1.
$\mathbf{A s H}_{\mathbf{6}}{ }^{\mathbf{3 +}}$: The MP2/6-31G** optimization shows that the $C_{2 v}$ symmetrical structure $\mathbf{1 0}$ with two $3 \mathrm{c}-2 \mathrm{e}$ bonds and two $2 \mathrm{c}-$ 2 e bonds is the only minimum on the potential energy surface of $\mathrm{AsH}_{6}{ }^{3+}$. The calculated geometries are given in Figure 1. We have also calculated (with G2) the exothermicities of the dissociation of $\mathbf{1 0}$ into $\mathbf{7}$ and H^{+}and into 9 and $\mathrm{H}_{3}{ }^{+}$and found them to be 196.7 and $259.7 \mathrm{kcal} / \mathrm{mol}$, respectively (Scheme 1).

In the series $\mathrm{NH}_{5}{ }^{2+}, \mathrm{PH}_{5}{ }^{2+}$, and $\mathrm{AsH}_{5}{ }^{2+}$, the calculated ΔH of protodissociations of the dications indicate an increase in the stabilities of the dications toward protodissociation with the increase in the size of the central atoms. Similarly, in the series $\mathrm{NH}_{6}{ }^{3+}, \mathrm{PH}_{6}{ }^{3+}$, and $\mathrm{AsH}_{6}{ }^{3+}$, the stabilities of the trications toward protodissociation also increase with the increase in the size of the central atoms.

The important implication of this work is to understand the nature of bonding of highly electron-deficient higher coordinate main group ions (superelectrophiles). ${ }^{16}$ Although such main group di- or trications may not be observed as long-lived species in superacid media, computational characterization gives additional support for their transient existence and involvement in superacid-catalyzed processes. Hydrogen-deuterium exchange studies in superacids will be reported separately.

In conclusion, the present ab initio study indicates that the C_{s} symmetrical structures $\mathbf{3}$ and $\mathbf{7}$ are the stationary points on the potential energy surfaces of $\mathrm{PH}_{5}{ }^{2+}$ and $\mathrm{AsH}_{5}{ }^{2+}$, respectively. The optimized structure shows that both $\mathbf{3}$ and 7 contain a $3 \mathrm{c}-$ 2 e bond. The $D_{3 h}$ symmetrical 2, $C_{2 v}$ symmetrical 6, and $C_{2 v}$ symmetrical structure 10, on the other hand, were located as stable minima on the potential energy surfaces of $\mathrm{NH}_{6}{ }^{3+}, \mathrm{PH}_{6}{ }^{3+}$, and $\mathrm{AsH}_{6}{ }^{3+}$, respectively. $\mathbf{6}$ and $\mathbf{1 0}$ were characterized with two $3 \mathrm{c}-2 \mathrm{e}$ bonds and two $2 \mathrm{c}-2 \mathrm{e}$ bonds.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

JA9729948

[^0]: (1) Chemistry in Superacids. 34. Part 33: Olah, G. A.; Burrichter, A.; Rasul, G.; Hachoumy, M.; Prakash, G. K. S. J. Am. Chem. Soc., in press. (2) (a) Olah, G. A.; Rasul, G. Acc. Chem. Res. 1997, 30, 245. (b) Haberlen, O. D.; Schmidbaur, H.; Rosch, N. J. Am. Chem. Soc. 1994, 116, 8241. Gorling, A.; Rosch, N.; Ellis, D. E.; Schmidbaur, H. Inorg. Chem. 1991, 30, 3986. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. Advances in Gas Phase Ion Chemistry; JAI Press Inc.: Greenwich, CT, 1996; p 125. Schreiner, P. R.; Schaefer, H. F.; Schleyer, P. v. R. J. Chem. Phys. 1995, 103, 5565.
 (3) Schmidbaur, H. Chem. Soc. Rev. 1995, 24, 391.
 (4) Olah, G. A.; Prakash, G. K. S.; Williams, R. E.; Field, L. D.; Wade, K. Hypercarbon Chemistry; John Wiley \& Sons: New York, 1987. Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; John Wiley \& Sons: New York, 1985.
 (5) Rasul, G. A.; Olah. G. A. Inorg. Chem. 1997, 36, 1278.
 (6) Olah. G. A.; Rasul, G. A. Inorg. Chem., in press.
 (7) Olah, G. A.; Burrichter, A.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 1997, 119, 4594.
 (8) Olah, G. A.; Rasul, G.; Prakash, G. K. S. Chem. Eur. J. 1997, 3, 1039.
 (9) Scherbaum, F.; Grohmann, A.; Huber B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1544.
 (10) Grohmann, A.; Riede, J.; Schmidbaur, H. Nature 1990, 345, 140.
 (11) Schmidbaur, H.; Beruda, H.; Zeller, E. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 87, 245.
 (12) Zeller, E.; Beruda, H.; Schmidbaur, H. Inorg. Chem. 1993, 32, 3203.
 (13) Schmidbaur, H.; Hofreiter, S.; Paul, M. Nature 1995, 377, 503.
 (14) Zeller, E.; Schmidbaur, H. J. Chem. Soc., Chem. Commun. 1993, 69.
 (15) Zeller, E.; Beruda, H.; Kolb, A.; Bissinger, P.; Schmidbaur, H. Nature 1991, 352, 141.
 (16) Olah, G. A. Angew. Chem., Int. Ed. Engl. 1993, 32, 767.

[^1]: (17) Gaussian 94 (Revision A.1): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.
 (18) (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley-Interscience: New York, 1986. (b) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.

